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PREFACE
MOTIVATION
This book is based on the author’s more comprehensive text Statistics for Engineers
and Scientists, 5th edition (McGraw-Hill, 2020), which is used for both one- and two-

semester courses. The key concepts from that book form the basis for this text, which is

designed for a one-semester course. The emphasis is on statistical methods and how they

can be applied to problems in science and engineering, rather than on theory. While the

fundamental principles of statistics are common to all disciplines, students in science

and engineering learn best from examples that present important ideas in realistic set-

tings. Accordingly, the book contains many examples that feature real, contemporary

data sets, both to motivate students and to show connections to industry and scientific

research. As the text emphasizes applications rather than theory, the mathematical level

is appropriately modest. Most of the book will be mathematically accessible to those

whose background includes one semester of calculus.

COMPUTER USE
Over the past 40 years, the development of fast and cheap computing has revolutionized

statistical practice; indeed, this is one of the main reasons that statistical methods have

been penetrating ever more deeply into scientific work. Scientists and engineers today

must not only be adept with computer software packages; they must also have the skill

to draw conclusions from computer output and to state those conclusions in words. Ac-

cordingly, the book contains exercises and examples that involve interpreting, as well as

generating, computer output, especially in the chapters on linear models and factorial

experiments. Many instructors integrate the use of statistical software into their courses;

this book may be used effectively with any package.

CONTENT
Chapter 1 covers sampling and descriptive statistics. The reason that statistical methods

work is that samples, when properly drawn, are likely to resemble their populations.

Therefore, Chapter 1 begins by describing some ways to draw valid samples. The second

part of the chapter discusses descriptive statistics for univariate data.

Chapter 2 presents descriptive statistics for bivariate data. The correlation coeffi-

cient and least-squares line are discussed. The discussion emphasizes that linear models

are appropriate only when the relationship between the variables is linear, and it de-

scribes the effects of outliers and influential points. Placing this chapter early enables

instructors to present some coverage of these topics in courses where there is not enough

time for a full treatment from an inferential point of view. Alternatively, this chapter

may be postponed and covered just before the inferential procedures for linear models

in Chapter 8.

vii
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Chapter 3 is about probability. The goal here is to present the essential ideas with-

out a lot of mathematical derivations. I have attempted to illustrate each result with an

example or two, in a scientific context where possible, to present the intuition behind the

result.

Chapter 4 presents many of the probability distribution functions commonly used

in practice. Probability plots and the Central Limit Theorem are also covered. Only the

normal and binomial distribution are used extensively in the remainder of the text; in-

structors may choose which of the other distributions to cover.

Chapters 5 and 6 cover one-sample methods for confidence intervals and hypoth-

esis testing, respectively. Point estimation is covered as well, in Chapter 5. The P-value

approach to hypothesis testing is emphasized, but fixed-level testing and power calcula-

tions are also covered. A discussion of the multiple testing problem is also presented.

Chapter 7 presents two-sample methods for confidence intervals and hypothesis

testing. There is often not enough time to cover as many of these methods as one would

like; instructors who are pressed for time may choose which of the methods they wish

to cover.

Chapter 8 covers inferential methods in linear regression. In practice, scatterplots

often exhibit curvature or contain influential points. Therefore, this chapter includes

material on checking model assumptions and transforming variables. In the coverage

of multiple regression, model selection methods are given particular emphasis, because

choosing the variables to include in a model is an essential step in many real-life

analyses.

Chapter 9 discusses some commonly used experimental designs and the methods

by which their data are analyzed. One-way and two-way analysis of variance methods,

along with randomized complete block designs and 2p factorial designs, are covered

fairly extensively.

Chapter 10 presents the topic of statistical quality control, covering control charts,

CUSUM charts, and process capability, and concluding with a brief discussion of

sixsigma quality.

RECOMMENDED COVERAGE
The book contains enough material for a one-semester course meeting four hours per

week. For a three-hour course, it will probably be necessary to make some choices about

coverage. One option is to cover the first three chapters, going lightly over the last two

sections of Chapter 3, then cover the binomial, Poisson, and normal distributions in

Chapter 4, along with the Central Limit Theorem. One can then cover the confidence

intervals and hypothesis tests in Chapters 5 and 6, and finish either with the two-sample

procedures in Chapter 7 or by covering as much of the material on inferential methods

in regression in Chapter 8 as time permits.

For a course that puts more emphasis on regression and factorial experiments, one

can go quickly over the power calculations and multiple testing procedures, and cover

Chapters 8 and 9 immediately following Chapter 6. Alternatively, one could substitute

Chapter 10 on statistical quality control for Chapter 9.
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NEW FOR THIS EDITION
The second edition of this book is intended to extend the strengths of the first. Some of

the changes are:

■ More than 250 new problems have been included.

■ Many examples have been updated.

■ Material on resistance to outliers has been added to Chapter 1.

■ Material on interpreting the slope of the least-squares line has been added to

Chapter 2.

■ Material on the F-test for variance has been added to Chapter 7.

■ The exposition has been improved in a number of places.
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Chapter1
Summarizing
Univariate Data

Introduction

Advances in science and engineering occur in large part through the collection and anal-

ysis of data. Proper analysis of data is challenging, because scientific data are subject

to random variation. That is, when scientific measurements are repeated, they come out

somewhat differently each time. This poses a problem: How can one draw conclusions

from the results of an experiment when those results could have come out differently?

To address this question, a knowledge of statistics is essential. The methods of statistics

allow scientists and engineers to design valid experiments and to draw reliable conclusions

from the data they produce.

While our emphasis in this book is on the applications of statistics to science and

engineering, it is worth mentioning that the analysis and interpretation of data are playing

an ever-increasing role in all aspects of modern life. For better or worse, huge amounts

of data are collected about our opinions and our lifestyles, for purposes ranging from the

creation of more effective marketing campaigns to the development of social policies

designed to improve our way of life. On almost any given day, newspaper articles are

published that purport to explain social or economic trends through the analysis of data.

A basic knowledge of statistics is therefore necessary not only to be an effective scientist

or engineer, but also to be a well-informed member of society.

The Basic Idea
The basic idea behind all statistical methods of data analysis is to make inferences

about a population by studying a relatively small sample chosen from it. As an illustra-

tion, consider a machine that makes steel balls for ball bearings used in clutch systems.

The specification for the diameter of the balls is 0.65 ± 0.03 cm. During the last hour,

the machine has made 2000 balls. The quality engineer wants to know approximately

1



2 CHAPTER 1 Summarizing Univariate Data

how many of these balls meet the specification. He does not have time to measure all

2000 balls. So he draws a random sample of 80 balls, measures them, and finds that 72

of them (90%) meet the diameter specification. Now, it is unlikely that the sample of

80 balls represents the population of 2000 perfectly. The proportion of good balls in the

population is likely to differ somewhat from the sample proportion of 90%. What the

engineer needs to know is just how large that difference is likely to be. For example, is

it plausible that the population percentage could be as high as 95%? 98%? As low as

85%? 80%?

Here are some specific questions that the engineer might need to answer on the basis

of these sample data:

1. The engineer needs to compute a rough estimate of the likely size of the difference

between the sample proportion and the population proportion. How large is a

typical difference for this kind of sample?

2. The quality engineer needs to note in a logbook the percentage of acceptable balls

manufactured in the last hour. Having observed that 90% of the sample balls were

good, he will indicate the percentage of acceptable balls in the population as an

interval of the form 90% ± x%, where x is a number calculated to provide

reasonable certainty that the true population percentage is in the interval. How

should x be calculated?

3. The engineer wants to be fairly certain that the percentage of good balls is at least

85%; otherwise, he will shut down the process for recalibration. How certain can

he be that at least 85% of the 1000 balls are good?

Much of this book is devoted to addressing questions like these. The first of these

questions requires the computation of a standard deviation, which we will discuss in

Chapter 3. The second question requires the construction of a confidence interval, which

we will learn about in Chapter 5. The third calls for a hypothesis test, which we will

study in Chapter 6.

The remaining chapters in the book cover other important topics. For example, the

engineer in our example may want to know how the amount of carbon in the steel balls is

related to their compressive strength. Issues like this can be addressed with the methods

of correlation and regression, which are covered in Chapters 2 and 8. It may also be

important to determine how to adjust the manufacturing process with regard to several

factors, in order to produce optimal results. This requires the design of factorial exper-
iments, which are discussed in Chapter 9. Finally, the engineer will need to develop a

plan for monitoring the quality of the product manufactured by the process. Chapter 10

covers the topic of statistical quality control, in which statistical methods are used to

maintain quality in an industrial setting.

The topics listed here concern methods of drawing conclusions from data. These

methods form the field of inferential statistics. Before we discuss these topics, we must

first learn more about methods of collecting data and of summarizing clearly the basic

information they contain. These are the topics of sampling and descriptive statistics,

and they are covered in the rest of this chapter.
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1.1 Sampling

As mentioned, statistical methods are based on the idea of analyzing a sample drawn

from a population. For this idea to work, the sample must be chosen in an appropri-

ate way. For example, let us say that we wished to study the heights of students at the

Colorado School of Mines by measuring a sample of 100 students. How should we choose

the 100 students to measure? Some methods are obviously bad. For example, choosing

the students from the rosters of the football and basketball teams would undoubtedly

result in a sample that would fail to represent the height distribution of the population of

students. You might think that it would be reasonable to use some conveniently obtained

sample, for example, all students living in a certain dorm or all students enrolled in engi-

neering statistics. After all, there is no reason to think that the heights of these students

would tend to differ from the heights of students in general. Samples like this are not

ideal, however, because they can turn out to be misleading in ways that are not antici-

pated. The best sampling methods involve random sampling. There are many different

random sampling methods, the most basic of which is simple random sampling.

Simple Random Samples
To understand the nature of a simple random sample, think of a lottery. Imagine that

10,000 lottery tickets have been sold and that 5 winners are to be chosen. What is the

fairest way to choose the winners? The fairest way is to put the 10,000 tickets in a drum,

mix them thoroughly, and then reach in and one by one draw 5 tickets out. These 5 win-

ning tickets are a simple random sample from the population of 10,000 lottery tickets.

Each ticket is equally likely to be one of the 5 tickets drawn. More important, each col-

lection of 5 tickets that can be formed from the 10,000 is equally likely to make up the

group of 5 that is drawn. It is this idea that forms the basis for the definition of a simple

random sample.

Summary

■ A population is the entire collection of objects or outcomes about which

information is sought.

■ A sample is a subset of a population, containing the objects or outcomes

that are actually observed.

■ A simple random sample of size n is a sample chosen by a method in

which each collection of n population items is equally likely to make up

the sample, just as in a lottery.

Since a simple random sample is analogous to a lottery, it can often be drawn by the

same method now used in many lotteries: with a computer random number generator.

Suppose there are N items in the population. One assigns to each item in the popula-

tion an integer between 1 and N. Then one generates a list of random integers between
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1 and N and chooses the corresponding population items to make up the simple random

sample.

Example
1.1

A utility company wants to conduct a survey to measure the satisfaction level of its cus-

tomers in a certain town. There are 10,000 customers in the town, and utility employees

want to draw a sample of size 200 to interview over the telephone. They obtain a list of

all 10,000 customers, and number them from 1 to 10,000. They use a computer random

number generator to generate 200 random integers between 1 and 10,000 and then tele-

phone the customers who correspond to those numbers. Is this a simple random sample?

Solution
Yes, this is a simple random sample. Note that it is analogous to a lottery in which each

customer has a ticket and 200 tickets are drawn.

Example
1.2

A quality engineer wants to inspect electronic microcircuits in order to obtain informa-

tion on the proportion that are defective. She decides to draw a sample of 100 circuits

from a day’s production. Each hour for 5 hours, she takes the 20 most recently produced

circuits and tests them. Is this a simple random sample?

Solution
No. Not every subset of 100 circuits is equally likely to make up the sample. To construct

a simple random sample, the engineer would need to assign a number to each circuit

produced during the day and then generate random numbers to determine which circuits

make up the sample.

Samples of Convenience
In some cases, it is difficult or impossible to draw a sample in a truly random way. In

these cases, the best one can do is to sample items by some convenient method. For

example, imagine that a construction engineer has just received a shipment of 1000 con-

crete blocks, each weighing approximately 50 pounds. The blocks have been delivered

in a large pile. The engineer wishes to investigate the crushing strength of the blocks

by measuring the strengths in a sample of 10 blocks. To draw a simple random sample

would require removing blocks from the center and bottom of the pile, which might be

quite difficult. For this reason, the engineer might construct a sample simply by taking

10 blocks off the top of the pile. A sample like this is called a sample of convenience.

Definition
A sample of convenience is a sample that is obtained in some convenient way,

and not drawn by a well-defined random method.

The big problem with samples of convenience is that they may differ systematically

in some way from the population. For this reason samples of convenience should only be
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used in situations where it is not feasible to draw a random sample. When it is necessary

to take a sample of convenience, it is important to think carefully about all the ways

in which the sample might differ systematically from the population. If it is reasonable

to believe that no important systematic difference exists, then it may be acceptable to

treat the sample of convenience as if it were a simple random sample. With regard to the

concrete blocks, if the engineer is confident that the blocks on the top of the pile do not

differ systematically in any important way from the rest, then he may treat the sample

of convenience as a simple random sample. If, however, it is possible that blocks in

different parts of the pile may have been made from different batches of mix or may have

different curing times or temperatures, a sample of convenience could give misleading

results.

Some people think that a simple random sample is guaranteed to reflect its popula-

tion perfectly. This is not true. Simple random samples always differ from their popula-

tions in some ways, and occasionally they may be substantially different. Two different

samples from the same population will differ from each other as well. This phenomenon

is known as sampling variation. Sampling variation is one of the reasons that scientific

experiments produce somewhat different results when repeated, even when the condi-

tions appear to be identical. For example, suppose that a quality inspector draws a simple

random sample of 40 bolts from a large shipment, measures the length of each, and finds

that 32 of them, or 80%, meet a length specification. Another inspector draws a different

sample of 40 bolts and finds that 36 of them, or 90%, meet the specification. By chance,

the second inspector got a few more good bolts in her sample. It is likely that neither

sample reflects the population perfectly. The proportion of good bolts in the population

is likely to be close to 80% or 90%, but it is not likely that it is exactly equal to either

value.

Since simple random samples don’t reflect their populations perfectly, why is it im-

portant that sampling be done at random? The benefit of a simple random sample is

that there is no systematic mechanism tending to make the sample unrepresentative.

The differences between the sample and its population are due entirely to random varia-

tion. Since the mathematical theory of random variation is well understood, we can use

mathematical models to study the relationship between simple random samples and their

populations. For a sample not chosen at random, there is generally no theory available to

describe the mechanisms that caused the sample to differ from its population. Therefore,

nonrandom samples are often difficult to analyze reliably.

Tangible and Conceptual Populations
The populations discussed so far have consisted of actual physical objects—the cus-

tomers of a utility company, the concrete blocks in a pile, the bolts in a shipment. Such

populations are called tangible populations. Tangible populations are always finite. Af-

ter an item is sampled, the population size decreases by 1. In principle, one could in some

cases return the sampled item to the population, with a chance to sample it again, but

this is rarely done in practice.

Engineering data are often produced by measurements made in the course of a sci-

entific experiment, rather than by sampling from a tangible population. To take a simple
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example, imagine that an engineer measures the length of a rod five times, being as care-

ful as possible to take the measurements under identical conditions. No matter how care-

fully the measurements are made, they will differ somewhat from one another,

because of variation in the measurement process that cannot be controlled or predicted. It

turns out that it is often appropriate to consider data like these to be a simple random

sample from a population. The population, in these cases, consists of all the values that

might possibly have been observed. Such a population is called a conceptual popula-
tion, since it does not consist of actual objects.

Definition
A simple random sample may consist of values obtained from a process under

identical experimental conditions. In this case, the sample comes from a popula-

tion that consists of all the values that might possibly have been observed. Such

a population is called a conceptual population.

Example 1.3 involves a conceptual population.

Example
1.3

A geologist weighs a rock several times on a sensitive scale. Each time, the scale gives

a slightly different reading. Under what conditions can these readings be thought of as

a simple random sample? What is the population?

Solution
If the physical characteristics of the scale remain the same for each weighing, so that the

measurements are made under identical conditions, then the readings may be considered

to be a simple random sample. The population is conceptual. It consists of all the readings

that the scale could in principle produce.

Determining Whether a Sample
Is a Simple Random Sample
We saw in Example 1.3 that it is the physical characteristics of the measurement process

that determine whether the data are a simple random sample. In general, when deciding

whether a set of data may be considered to be a simple random sample, it is necessary to

have some understanding of the process that generated the data. Statistical methods can

sometimes help, especially when the sample is large, but knowledge of the mechanism

that produced the data is more important.

Example
1.4

A new chemical process has been designed that is supposed to produce a higher yield of

a certain chemical than does an old process. To study the yield of this process, we run it

50 times and record the 50 yields. Under what conditions might it be reasonable to treat

this as a simple random sample? Describe some conditions under which it might not be

appropriate to treat this as a simple random sample.
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Solution
To answer this, we must first specify the population. The population is conceptual and

consists of the set of all yields that will result from this process as many times as it will

ever be run. What we have done is to sample the first 50 yields of the process. If, and
only if, we are confident that the first 50 yields are generated under identical conditions

and that they do not differ in any systematic way from the yields of future runs, then we

may treat them as a simple random sample.

Be cautious, however. There are many conditions under which the 50 yields could

fail to be a simple random sample. For example, with chemical processes, it is some-

times the case that runs with higher yields tend to be followed by runs with lower

yields, and vice versa. Sometimes yields tend to increase over time, as process engineers

learn from experience how to run the process more efficiently. In these cases, the yields

are not being generated under identical conditions and would not be a simple random

sample.

Example 1.4 shows once again that a good knowledge of the nature of the process

under consideration is important in deciding whether data may be considered to be a

simple random sample. Statistical methods can sometimes be used to show that a given

data set is not a simple random sample. For example, sometimes experimental conditions

gradually change over time. A simple but effective method to detect this condition is to

plot the observations in the order they were taken. A simple random sample should show

no obvious pattern or trend.

Figure 1.1 presents plots of three samples in the order they were taken. The plot

in Figure 1.1a shows an oscillatory pattern. The plot in Figure 1.1b shows an increasing

trend. Neither of these samples should be treated as a simple random sample. The plot in

Figure 1.1c does not appear to show any obvious pattern or trend. It might be appropriate

to treat these data as a simple random sample. However, before making that decision, it

100 20
Measurement number

30 40 50

(a)

100 20
Measurement number

30 40 50

(b)

100 20
Measurement number

30 40 50

(c)

FIGURE 1.1 Three plots of observed values versus the order in which they were made. (a) The values show a definite

pattern over time. This is not a simple random sample. (b) The values show a trend over time. This is not a simple random

sample. (c) The values do not show a pattern or trend. It may be appropriate to treat these data as a simple random sample.
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is still important to think about the process that produced the data, since there may be

concerns that don’t show up in the plot.

Independence
The items in a sample are said to be independent if knowing the values of some of

them does not help to predict the values of the others. With a finite, tangible population,

the items in a simple random sample are not strictly independent, because as each item

is drawn, the population changes. This change can be substantial when the population

is small. However, when the population is very large, this change is negligible and the

items can be treated as if they were independent.

To illustrate this idea, imagine that we draw a simple random sample of 2 items

from the population

0 0 1 1

For the first draw, the numbers 0 and 1 are equally likely. But the value of the second

item is clearly influenced by the first; if the first is 0, the second is more likely to be 1,

and vice versa. Thus, the sampled items are dependent. Now assume we draw a sample

of size 2 from this population:

0 ’sOne million 1 ’sOne million

Again on the first draw, the numbers 0 and 1 are equally likely. But unlike the previous

example, these two values remain almost equally likely the second draw as well, no

matter what happens on the first draw. With the large population, the sample items are

for all practical purposes independent.

It is reasonable to wonder how large a population must be in order that the items in

a simple random sample may be treated as independent. A rule of thumb is that when

sampling from a finite population, the items may be treated as independent so long as

the sample contains 5% or less of the population.

Interestingly, it is possible to make a population behave as though it were infinitely

large, by replacing each item after it is sampled. This method is called sampling with
replacement. With this method, the population is exactly the same on every draw, and

the sampled items are truly independent.

With a conceptual population, we require that the sample items be produced under

identical experimental conditions. In particular, then, no sample value may influence the

conditions under which the others are produced. Therefore, the items in a simple random

sample from a conceptual population may be treated as independent. We may think of a

conceptual population as being infinite or, equivalently, that the items are sampled with

replacement.
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Summary

■ The items in a sample are independent if knowing the values of some of

the items does not help to predict the values of the others.

■ Items in a simple random sample may be treated as independent in many

cases encountered in practice. The exception occurs when the population is

finite and the sample consists of a substantial fraction (more than 5%) of

the population.

Other Sampling Methods
In addition to simple random sampling there are other sampling methods that are useful

in various situations. In weighted sampling, some items are given a greater chance of

being selected than others, like a lottery in which some people have more tickets than

others. In stratified random sampling, the population is divided up into subpopula-

tions, called strata, and a simple random sample is drawn from each stratum. In cluster
sampling, items are drawn from the population in groups, or clusters. Cluster sampling

is useful when the population is too large and spread out for simple random sampling to

be feasible. For example, many U.S. government agencies use cluster sampling to sample

the U.S. population to measure sociological factors such as income and unemployment.

A good source of information on sampling methods is Cochran (1977).

Simple random sampling is not the only valid method of sampling. But it is the

most fundamental, and we will focus most of our attention on this method. From now

on, unless otherwise stated, the terms “sample” and “random sample” will be taken to

mean “simple random sample.”

Types of Data
When a numerical quantity designating how much or how many is assigned to each item

in a sample, the resulting set of values is called numerical or quantitative. In some

cases, sample items are placed into categories, and category names are assigned to the

sample items. Then the data are categorical or qualitative. Sometimes both quantitative

and categorical data are collected in the same experiment. For example, in a loading test

of column-to-beam welded connections, data may be collected both on the torque applied

at failure and on the location of the failure (weld or beam). The torque is a quantitative

variable, and the location is a categorical variable.

Controlled Experiments and Observational Studies
Many scientific experiments are designed to determine the effect of changing one or

more factors on the value of a response. For example, suppose that a chemical engi-

neer wants to determine how the concentrations of reagent and catalyst affect the yield

of a process. The engineer can run the process several times, changing the concentra-

tions each time, and compare the yields that result. This sort of experiment is called




